

An Efficient And Scalable Deep Learning Approach for Road Damage Detection

Sadra Naddaf, Mahdi Naddaf, Amir Kashani, Hassan Zargazadeh

RICS Lab, Lamar University A.I. Lab, Stanley Black & Decker

2020 IEEE International Big Data Conference

Content

- Background
- Dataset
- Method
- Evaluation Metrics
- Augmentation
- Training
- results
- Conclusions

Background

- 16% of traffic crashes are result of poor pavement conditions according to NHTSA*.
- \$25 billion per year, estimated costs of pavement maintenance. according to a study FHA in 1997**.
- Developing low cost and automated maintenance techniques is necessary.

- * National motor vehicle crash causation survey: Report to congress ," National Highway Traffic Safety Administration Technical Report DOT HS, vol. 811, p. 059, 2008
- ** summary of shrp research and economic benefits of pavement maintenance," Federal Highway Administration, Tech. Rep., 1997.

Dataset

- Images from 3 different countries with 4 classes of damage types.
- Images gathered using a smartphone installed on dashboard of a car.

	Total	Categories					
		D00	D10	D20	D40		
Train	18930	5918	4014	7535	5103		
Validation	2111	674	432	846	524		
Test1	2631	a					
Test2	2664						
Total	26336	6592	4446	8381	5627		
0.5	•		1 1				

^a Testset annotations were not released.

Method

- EfficientDet
- $R_{input} = 512 + \phi \cdot 128$ $W_{bifpn} = 64 \cdot (1.35\phi)$ $D_{bifpn} = 3 + \phi$ $D_{box} = D_{class} = 3 + [\phi/3]$

ZUZU IEEE DIG DALA DIG CUP CHAIIEIIGE

Evaluation Metrics

• F1 per Competition rules

$$2 \cdot \frac{precision \cdot recall}{precision + recall}$$
 $precision = \frac{tp}{tp + fp}; recall = \frac{tp}{tp + fn}$

• AP metrics :

F1 =

- recall and precision of a robust object detector are not altering much, with varying confidence.
- AP₅₀, AP₇₅, AP_s(objects with area<32²) AP_m, AP₁ (objects with area>96²) and mAP.

Augmentation

- Transferred augmentation strategies learned through AutoAugment*.
- Trained A D0 network using 25% of the Training Set, for 150 epochs.
- Trained Networks using most-effective policy(policyV1)

policy Name	Base (% of Improvement)						
	AP_{50}	AP_s	AP_m	AP_l			
NoAugment	31.7	3.8	7.3	12.7			
policyV0 ^a	31.9(+0.6)	7.0(+84.2)	7.8(+6.8)	11.9(-6.2)			
policyV1 ^a	34.1(+7.5)	5.9(+55.2)	8.2(+12.3)	12.9(+1.5)			
policyV2 ^a	33.0(+4.1)	6.4(+68.4)	8.6(+17.8)	12.2(-4)			
policyV3 ^a	33.4(+5.3)	5.1(+34.2)	7.7(+5.4)	13.4(+5.5)			

^a Rotation strategies are removed from these policies.

* "Learning data augmentation strategies for object detection" By Zoph et al.

Training

- Used K-means to find optimal anchor box ratios.
- For small EfficientDet Networks (D0-D4) Used 3 V100-16GB GPUs.
- Mixed precision Training and syncBN Normalization provided by apex.
- Exponential moving average used with weight decay of 0.9998
- initial weights are transferred from EffcientDet model trained on COCO dataset.
- Other parameters are similar to original EfficientDet Implementation.

• Results

Model Name	Input Image Resolution	Backbone Name	Test1 F1	Test2 F1	Validation						
					AP	AP_{50}	AP ₇₅	AP _s	AP_m	AP_l	F1
D0	512	B0	52.1	51.4	19.1	47.2	11.5	7.2	14.3	22.2	54.04
D0-AUG	512	B 0	51.2	52.5	19.8	48.4	12.1	7.9	15.4	22.7	54.03
D1	640	B1	53.8	54.7	21.7	51.5	13.4	15.3	16.9	25.0	56.9
D1-AUG	640	B1	54.4	55.4	22.0	51.7	13.1	17.1	17.7	24.7	56.5
D2	768	B2	55.2	54.9	22.9	53.5	14.9	10.4	18.6	24.9	56.7
D2-AUG	768	B2	54.1	54.0	22.9	54.2	15.2	13.3	18.8	24.7	56.6
D3	896	B3	56.5	54.7	23.0	53.4	15.0	10.5	18.4	25.4	56.5
D3-AUG	896	B3	56.3	54.2	22.6	53.4	14.7	11.4	18.3	24.8	56.8
D4	1024	B4	54.53	54.6	22.8	53.3	15.1	15.5	18.1	25.7	57.2
D7-AUG	1536	B6	56.5	54.9	23.4	53.6	15.0	31.4	19.2	25.5	56.5

- Results
- Inference time
- Real-time
- Scalability

Model Name	#Params	Batch size/ Learning rate	Inference Time(img/s) V100			
			b ^b =1	$b^{b}=8$	b ^b =16	
DO	3.8M	90/0.112	20	121	178	
D1	6.5M	75/0.075	15	98	147	
D2	8M	45/0.056	12	82	100	
D3	11.9M	18/0.026	10	54	58	
D4	20.5M	9/0.011	9	35	37	
D7	51M	8/0.01	6	9	10	

b denotes batch size for inference.

• Discussion on results.

2020 IEEE Big Data Big Cup Challenge

(1)

• Tested on local roads

Conclusions

- A family of efficient and scalable models for road damage detection is introduced.
- Model can be chosen based on with respect to hardware and time constraints.
- As time performance of models shows no ensemble or TTA is used.
- Transferred augmentation policies for other works.
- For Future It is suggested to revise dataset.
- Evaluate reliability of dataset with more Images from different countries.